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Let mEN and define Smto be the class of functions f E cm - I (IR) which, in each
[j - I, j] (jEll), coincide with some real polynomial of degree"; m. We study the
cardinal spline interpolation problem of constructing an element s E 8 m with
s(j - A) = Yl' jEll, where AE' (0, I] is a translation parameter. Under some natural
conditions on Aand m, ter Morsche (in "Spline Functions" (K. Bohmer, G. Meinar
dus, and W. Schempp, Eds.), pp. 21G-219, Springer-Verlag, BerlinjHeidelbergjNew
York, 1976) and Schoenberg (J. Approx. Theory 6 (1972), 404--420; in "Studies
in Spline-Functions and Approximation Theory" (S. Karlin, Ch. A. Micchelli,
A. Pinkus, I. J. Schoenberg, Eds.), pp. 251-276, Academic Press, New York, 1976)
have proved that this problem has a unique solution of power growth, provided
that the interpolation data are of power growth and that this solution can be given
by a series of Lagrangian splines converging locally uniformly. In what follows we
prove an analogous result for exponential growth conditions instead of power
growth conditions, Moreover, we extend the concept of extremal bases, given by
Reimer (in "Approximation Theory III" (E. Cheney, Ed.), pp.723-728, Academic
Press, New York, 1980), to topological bases of normed spaces with infinite dimen
sion and apply this concept to the subspace of all bounded functions of Sm'
(0 1988 Academic Press, Inc.

1. INTRODUCTION

Let mEN and let Sm be the class of cardinal spline functions of degree
m, consisting of all functions SEem - 1(IR) with

S(j - 1+ t) = pit),

for t E [0, 1] and j E Z, where IP'm denotes the linear space of real
polynomials of degree not exceeding m.

Further, let A. E {O, 1] be a translation parameter and Y = (Yj)jE Z be a
prescribed sequence of real numbers. We study the problem of finding a
spline S E Sm satisfying

S{j - 2) = Yj'
167
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which is an element of some prescribed linear space V C Sm' In accordance
to Schoenberg [14] we call this problem a cardinal interpolation problem
and denote it by the symbol

CIP(y, V).

In what follows we derive the interpolation theory for the space

S': := {SE Sm: S bounded}

by a method, which can also be applied to the spaces

Sc,tI.fJ2):= {SE Sm: s(x) = CD{lJf), X -400,

s(x) = CD(P1X !), x -4 - 00 },

PI' P2 E IR +, and which then provides for new results. In order to provide
that the cardinal interpolation problems CIP(y, Sm), CIP(y, Sc,thfJ2») are
not unsolvable in advance, we assume that y is an element of

yoo:= {Y=(yJJE1,EIR1': ybounded},

y(fit,fJ2) '= {y E (y.) E 1R1'· Y =CD(pj) J' -4 c:JJ, } jElL '} I , ,

YJ= CD(PIJI), j -4 - c:JJ},

respectively (P b P2 E IR +).
Under the assumption

(A = 1 => m == 1 mod 2) 1\ (A = ! => m == 0 mod 2) (2)

ter Morsche [6] and Schoenberg [14, 16] have examined the problem
CIP( y, V) for linear spaces which are given by polynomial growth
conditions. They showed that CIP(y, Sm) has one and only one solution of
power growth, if y E 1R1' is of power growth, and that this solution is given
by a series of Lagrangian splines converging locally uniformly,

In what follows we prove similar results for exponential growth
conditions instead of polynomial growth conditions. To this end we derive
a criterion for the convergence/divergence of the series of Lagrangian
splines used by ter Morsche and Schoenberg, as is usual in the theory of
power series. This is a generalization of the work of Reimer [9] who dealt
with the case A. = 1, m == 1 mod 2. Finally we deal with the case

(A. = 1 1\ m == 1 mod 2) v (A. =! 1\ m == 0 mod 2), (3 )

which is of importance, as in this case the Lagrangians of the problem
CIP( y, S,:) have the extremal property that their supremum-norms are
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given by one, see Reimer [8], Siepmann [17]. Besides, we extend the
concept of extremal algebraic bases for normed spaces, given by Reimer
[7J, to the case of topological bases for normed spaces with infinite
dimension and apply this concept to the space S;;;.

2. CONVERGENCE OF LAGRANGIAN SPLINE SERIES

Like Meinardus and Merz [3], Merz [4], ter Morsche [5,6], and
Reimer [8,9] we make use of the generalized Euler-Frobenius
polynomials H n : C x C --+ C, defined by

Hn( t, z) = (1 - zr + 1 • ( t + z :z)n (1 ~ z)' (4)

t, z E C, Izi < 1, n E No. Due to ter Morsche [5] the zeroes z~n)(t) of Hn(t, .)
are real distinct and non-positive, if t e [0, 1], n~ I, and may be
enumerated such that

(5)

holds (with z\n)(l)= -00; compare (7)). By the definition of the Hn we
obtain the following properties (which are proved in ter Morsche [5] or
Siepmann [17]):

if t e [0, 1 - A)

if t = 1- A,

if tE(1-A,I)

(6)

(7)

(8)

(9)

(10)

neN,

z =1= 0,

nE N,
o
ot Hn(t,z)=n.(1-z).Hn- 1(t,z),

Hn(O, z) = z· Hn(1, z),

Hn(1- t, z)=zn . Hn(t, Z-1),

z~n)(t) is strictly monotonic decreasing with respect to t E [0, 1],

1

<0
a(n) t.= Hn(t,z~n)(I-A.)) =

V.A ( ). H~(1 - A., z~n)( 1 _ A.}) 0
>0

v = 1,..., m, AE (0,1],

n

Hn(t,z)=n! L Bo.n(j+t)zi,
j=O

(11)

tElO,I], Z E IR, nEN,
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where Bo,,, denotes the unique element of S" with supp Bo,,, = [0, n + 1] and
f [I;l Bo,,,(x) dx = 1 (compare Meinardus [1]).

We base our ideas on the following representation of the Lagangian It;,
of the problem CIP( y, S~), where S~ is defined by

S~:= {SE Sm: s(x + N) = s(x), XE IR}.

Note that due to ter Morsche [5] CIP(y, S~) has a unique solution for
any data y E yN,

yN:= {y = (Y)id' E 1R1': Yi+N= Yi' jE Z},

provided that the parameters A, m, and N satisfy the condition

N=. 1 mod 2

or

N=.O mod 2 1\ m =. 0 mod 2 1\ A=I- 1

or

N=.O mod 2 1\ m =. 1 mod 2 1\ A=I- !.

Let Itl be the unique solution of CIP( Y, S;;;) for the data

(12)

if k i omod N,
if k=.OmodN,

k E 71., and define qfl E IPm by

qJ:;.(t) = It),(J - 1+ t),

j E Z, Using the abbreviations

t E [0, 1],

Z1',1 := Z~m)(l -;.)

we have the identity

and

m

q;;l(t)=(l-t)m;.-mDO,i+ L al',;,(t)(Z:';:J-l/(l-Z:';,» (13)
1'=1

for t E [0, 1], j =0, 1, ,.., N - 1. In case of A= 1 1\ m =. 1 mod 2 Reimer [8]
has derived similar equations from a well-known representation by Meinar
dus and Merz [3] and Merz [4] by means of the residual theorem. This
method has been extended to the other cases noted in (12) by Siepmann
[17]. (13) may be proved in the same way, but it became possible to derive



CARDINAL SPLINE INTERPOLAnON 171

it without using the residual theorem by purely algebraic methods (Reimer
and Siepmann [10]).

In order to obtain a representation of the Lagrangians of the inter
polation problem CIP(y, S;::) we need the following notation.

Let t E [0, 1) and n E 1\1\{l}. Define

I~n)(t) := {Jl E {1, , n}: Iz1n)(t)1 ~ 1},

I&n)(t) := {Jl E {1, , n}: Iz~n)(t)1 ~ 1},

r~n)(t) := max I~)(t),

r&n)(t):= min I&n)(t),

r(n)(t)·- (n) (t)
<'1 .-Z,\n)(I) '

r(n)(t) := zen) (t)
<'2 ,~n)(t)'

Note that Iyn)(t) 1:- 0, j = 1, 2, and (~n)(t) ~ -1, -1 ~ (&n)(t) ~ 0 hold for
t E [0, 1).

By the limit process N -+ eJ:) we have

LEMMA 1. Let mE 1\1\{l}, AE (0, 1J, VE {O, 1, ..., m-1}. Then the
sequence ((dldxr 1~'X+I(x»NEN converges locally uniformly on IR. The
function 10:;,: IR -+ 1R,'IO:;,(x) := limN ~ 00 l~~+ I(X), has the representation

t E [0, 1], j E Z,

with

(1-t)mA-m<50•j - l:* a~~)(t)'(Zl:")(1-A»-j-1
I'E~,"I(I_;')

)'* a(m)(t)·(z(m)(1-A»-j-1
f;), 1',;' I'

I'Ef{' (I-A.)

for -jE 1\1,

(14)

where the asterisk in the sums means that every term of the sum belonging to
a summation index Jl with Iz1m)( 1- A.)I ::::: 1 is to be weighted by the factor l

Moreover 10:;. is a solution of CIP((Jo,j)jEz, S;::) and we have the
asymptotic

'D:;.(j - 1+ t) = lD( ,C1m)( 1- A)I-j), j -+ 00,

ltf;,(j-l + t) = lD(I'&m)(l- A)I-j
), j -+ - 00.
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Proof Note that, by (13), the limits

(~r qXHt) = J~oo (~r q],~+ I(t),

(~r q}'j(t) = J~oo (~r qJ~i)+ u(t), -jEN,

(15 )

are uniform with respect to t E [0, 1], v= 0, 1, ..., m - 1. Thus the properties
of l[f;., given in Lemma 1, are direct consequences of the interpolation
prop~rties of the regularity properties of I~~ + I, and of (5).

Remark. If assumption (2) holds, then we even have that the limits

(~r 100;.(x) =J~ (~r I~;.(x)

exist, v= 0, 1, ..., m -1; in this case the representation of the Lagrangian 10:;.
coincides with that given by ter Morsche [6].

Next we define the functions 1)5 E s;;: , j E 71, by

IX'l(x):=IO:;.(x-j), xEIR,

and deal with the problem of convergence/divergence of the series

00

L: Y/M(x), XE IR,
j= - 00

which is called convergent (uniformly convergent, locally uniformly
convergent), if both the series

00

L: yjlj)Jx)
i~O

and
-I

L: Y/X:iJx)
i= - 00

converge (converge uniformly, converge locally uniformly).
Further, let us introduce the abbreviations

ZJ.l.;' := z~m)(1 - A), aJ.l,;.(t) := a~':i)(t), Il = 1, 2, ..., m,

(i,;' := (jrn)( 1- A), Ii,;' := Ijrn l ( 1- A), j = 1, 2,

rj,J.:=rjm)(I-A), j=I,2.

As a consequence of Lemma 1 the formal series
00

s(k-l + t):= L Y/'tAk-l + t)
j~ - 00
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satisfy the following identities for k E l.., t E [0, 1]:

00

s(k-l + t)= L yi~A(k-l + t- j)
j= -00

00 00

= L Yjqk-j,A(t) + L Y ~jqk+j,A(t)
j=k+ 1 j=-k

00 00

= L Yk+j-lqf'-j,A(t)+ I Yk-jqj~Ht)
j=2 j=O

00

= Yk(l- t)mA. -m + I Yk+j-l' I* al',A(t) Z~J.2
j= 2 I'E 12)

00

- I Yk-j' I* al',A(t) z;;:i- 1

j=O I'E It"

173

=Yk(l_t)mA.~m+.f Yk+j+l({A' I*al"A(t)(~I"A)j
J = 0 I' E /z,A "'2,A

- f Yk-j+l(l,{ I* al',...(t) ((I,A)j. (16)
j = 1 I' E It,A Z 1', ...

Now define the polynomials Ap, Bj ,"" j E Z, by

tE [0,1]. By (5) and (10) the inequalities

0< Iar2,A, ...(t) I~ IAj, ...(t)! ~ L* lal', ...(t) I~ A,
J.l.Eh,A.

0< lart,.,A(t)1 ~ IBp(t)1 ~ L* lal', ...(t)1 ~ B,
I' E 1t,1

hold for t E [0, 1)\{1 - A. }, j E Z (see Reimer [9], Siepmann [17]). Hence
we conclude that the identities

lim sup~ = lim sup 41 Yj+k+ l' Aj,...(t) I,
}_ 00

lim sup~ = lim sup '<VI Yj+k+ l' Bj,A(t)I
j_ -00

hold for k E Z, t E [0, 1)\{I - A.}. Now we can prove

(17)
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THEOREM 1. Let mE N\{1}, AE (0, 1], and (Yj)JEZ E IRz and define

R+ := (lim SUp~)-l, R_ := (lim sup ~)-l. (18)

Then the series
.i ....... 00 j-.. - 00

<Xl

s(x):= L yjIXi(x)
j~ -<Xl

(19)

is convergent for x E (1 - A) . 7l. by definition, for x E ~\(1 - ),) . 7l., if

and (20)

holds, and it is divergent for x E IR\(1 - ),) . 7l., if

or (21)

Moreover, if condition (20) holds, then the formal derivations

<Xl (d)V
sv(x):=j~~<XlYj dx 1)5.(x)

converge locally uniformly in IR, v= 0, 1, ..., m - 1, and s is a solution of
CIP((Yj)jEZ' 8m ).

Proof Convergence/divergence of the series (19) is an immediate
consequence of (17). Now let (20) hold. If we substitute the polynomials
alJ.A in (16) by (d/dtralJ.A' v= 0, 1, ..., m -1, then we derive the uniform
convergence of (d/dtrs(k -1 + t) with respect to t E [0, 1] by means of the
inequalities

v= 0, 1, ..., m - 1, k E 7l.. Using the relations

v=0, 1, ..., m - 1, j E 7l., we conclude the locally uniform convergence of the
Sv, v=O, 1, ...,m-l, and hence SECm-1(1R). From (16) we obtain the
identity
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00

s(k-l+t)=Yk(l_t)mA,-m+ L*al',,\(t). L Yk+j+1Z~,,\
I'E/V j=o

00

- L* al')t)· L Yk-j+ lz;,i
I'E 1,) j= 1

175

(22)

for t E [0, 1], k E 7L, which proves that s is an element of Sm and thus a
solution of CIP(y, Sm)'

Remark. Condition (20) of Theorem 1 means that the data (Yj)jEZ
satisfy the growing condition

with

Yj = (!J(!3{),

Yj= (!J(!3yl),

and

j -+ 00,

j-+ -00,

i.e., Y E ylPl,P2).

If assumption (2) is valid, then the interpolation problem CIP(y, S~) has
a solution s with

00 00

s(x)= L Y)XHx)= L y)~,\(x-j)
j=-oo j=-oo

00

= L Yj_N10:,\(X-j+N)=s(x+N),
j= -00

provided that Y E yN (compare Schoenberg [19]). Moreover, if we define
the data Y = (Y)jE Z by

if j i °mod N
if j=Omod N,

then we obtain the relation

00

s(k -1 + t) = (1- t)mA, -m <5 0,k + L al',,\(t)· L Z~~-k-l

I'Eh,;. j= 1

00

- '" a (t). '" z-jN-k-lL. 1','\ L. 1'.'\
I'E/I,' j=O

= q:',\(t),

t E [0,1], k = 0,1, ..., N -1. Thus under assumption (2) the identity (13)
may be derived from the representation of 10:,\, given in Lemma 1.



176 DIETMAR SIEPMANN

3. UNIQUENESS

Due to Schoenberg [14, 16] the dimension of the linear space

is given by

{
m-1

dJ..:=
m

if ). = 1

if ). E (0, 1).

To construct a basis for WJ.. Schoenberg used the cardinal exponential
splines, defined by

00

s(x; z):= L ziBo,m(x - j),
j= - 00

x, ZEllt

By means of the relations (8) and (11) it is easy to prove the identity

k-I k-I-m
Z -1 z

s(k-1+t;z)=-, Hm(t,z)= I Hm(l-t,z), (23)
m. m.

t E [0, 1], z E IR\ {O}, k E Z. From (23) we conclude that the functions
sv,J.. E Sm, V = I, ..., dJ..,

are solutions of CIP(O, Sm) and that every non-trivial linear combination
cP(x)=L~A=l evsv,J..(x) satisfies

or

t E [0, 1)\{l-).}. As a consequence of (24)

(compare Schoenberg [14, 16]) and hence the cardinal interpolation
problem CIP(O, S<,!t.{J2)) has a unique solution, if

and (25)

In this case the series (19) is a solution ofCIP(y, S<,!t.{J2»), if yE ylfJI,{J2), as is
shown in the following theorem.
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THEOREM 2. Let mE N\{1}, A. E (0, 1], and PI' P2 E fR + with

1,~m}(1-A.)I-1 < PI < 1,~m}(1-A)I-1

and

Further let

177

(26)

(27)

(A. = 1 ==> m == 1 mod 2) and (A. =! ==> m == 0 mod 2). (28)

Then CIP( y, S~I,(h}) has a unique solution s for any data y E y<IlI'(h}, which is
given by the series (19).

Proof Let Sl> S2 be two different solutions of CIP(y, S~,,1l2»). Then
Sl - S2 is a non-trivial solution of CIP(O, SUf,,1l2»), which is a contradiction
to (25). Hence uniqueness of the theorem is shown, and in view of
Theorem 1 we only have to prove that the growth conditions

s(x) = (!)(Pf),

s(x) = (!)(fJ~xl),

x --+ 00,

x --+ - 00,
(29)

are satisfied by the series (19).
From Eq. (22) we obtain for fixed kEN and t E [0, 1] the inequalities

Is(k - 1+ t)1 ~ c· {pp -m +jl~2: !ajl,A(t)1 .J~O P1 + J+ I IZjl,AI J

k

+ L* lajl,A(t)1 L M-H I IZjl,AI-j
jlEh,;. J= I

+ I* Iajl,;.(t) I . f p~k-j+ II IZjl,AI-J}
jlEh,;. J=k+ I

~ c· P1 {A. -m +P~2: lajl,A(t)1 PI' J~O (PI IZjl,AI)J

+ jl~l: lajl,A(t)1 PI 'J~O (PI IZjl.AI)-J}

+C· I*lap,A(t)llzjl.AI- k
-

l
• f (P2Izjl,AI- I )J,

jlEI~ }-O
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where the involved series converge by (26) and (27). Thus we have for
x>O, t :=x- [x], k:= [x] + 1,

Is(x)1 = Is(k - 1+ t)1 ~ Co(P7 + "1,A ,-k)

~2CoP7= 2CoP7- 1 +1 Pl-I

~CIP7-1+I=CIPf,

which shows the first part of (29). Since the second part is proved with the
same methods (see Siepmann [17]), it is omitted here.

Remark. Theorem 2 is sharp in the following sense. If the assumptions
of Theorem 2 are valid with the exception of (26), which is replaced by the
condition

then we cannot conclude the existence of a solution of CIP(y, Sm) with

(30)

In case of PI<,,~m)(1-A)I-1 (30) is violated by every cardinal spline,
interpolating the data y= (<>o)j€V which is an immediate consequence of
Lemma 1 and (24).

Now let PI=,,~m)(l-A)I-1 and (Yj)jEZ be a sequence of data with

j----+ -00,

and

Following the proof of Theorem 2 we obtain the inequality

Is(k-1 + t)1 k
,,~m)(l_ A)I-k ~ C· ,

for t E [0, 1)\{l- A}, where s denotes the Lagrangian spline series (19).
Using (24) again, we conclude that there is no solution of CIP(y, S~t.P2))

for the sequence Y = (Yj)jEV given above. The same is true, if (27) is
replaced by the condition

Moreover, CIP( Y, S~t.P2») has no unique solution, if and only if

PI 1~ Izv(l- A)I ~ P2

holds for any vE {I, ..., m}.
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If the data Y= (Yj)jEZ satisfy the condition

IYj,1 ~ C ·jCynl(I-A)!-j" VE N,

or

179

(31)

for a strictly monotonic increasing sequence (j')'E IIJ E N IIJ
, then the series

(19) doesnot converge for tE [0, 1)\{I-A}. However, notice that there are
data of exponential growth which have a solution of CIP(y, Sm) of the
same exponential growth, although the series (19) doesnot converge,
compare Schempp [13], Schoenberg [15].

In the case m = 1 we have analogous results in Theorem 1 and
Theorem 2, with slightly modified growing conditions, due to the fact that
Bt(t,·) has at most one zero, tE [0,1]. The reader is referred to Siepmann
[ 17].

As a consequence of Theorem 2 we have

COROLLARY 1. Let mEN\{l}, AE[O, 1), and fJ1>fJ2E~+ satisfy the
conditions (26) and (27). Moreover, let (28) hold and define (Lj,A)jEIIJ by

L 2j,A := IIj,

jEN:

(a) If the space S~lolh) is provided with the topology of locally uniform
convergence, then (Lj.A)jEIIJ is a Schauder-basis of S~lofJ2) (in the sense of
Singer [19]).

(b) If S':: is provided with the topology of uniform convergence, then
(L j,A) j E IIJ is a Schauder-basis of S':: .

Proof By Eq. (22) we conclude the uniform convergence of the series
(19), if y E y oo

• Thus, by Theorem 2, (Lp)j E N is a topological basis of both
the spaces S~1,fJ2l and S,::. We have to show that the associated coefficient
functionals

00

s = L ~jLj,A -+ ~k'
j= t

kEN, are continuous, which is a direct consequence of the inequalities

640/53/2-5

IcP}fhfJ2)(S)! ~ sup{ Is(x)l: x E [ -k, k]},

ItPk"(s)\ ~ sup{ ls(x)l: x E ~},

SE S~lofJ2),

SES,::.
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Finally, we conclude that the periodic interpolation problem CIP(y, S;;;)
has a unique solution, if y E yN, provided that (12) holds. This is a direct
consequence of Theorem 2, if

or
(N==.lmod2/\A.=l/\m==.Omod2)

(N ==. 1 mod 2 /\ A. = ! /\ m ==. 1 mod 2)
(32)

is not satisfied. Now let (32) hold; then every solution of CIP(O, S;;n is of
the form

X E [j, j + 1], j E Z, C E IR, where Em is the so-called Euler-spline, which, by
definition, is a function of period 2. Thus every solution of CIP(O, S;;;) must
possess the odd period N and the period 2, which is only possible if C = 0.
Hence the homogeneous problem CIP(O, S;;;) has a uniqe solution,
implying that CIP( y, S;;;) has a unique solution for any data y E yN even in
case of (32).

4. EXTREMAL TOPOLOGICAL BASES OF NORMED SPACES

By a result of Reimer [8] and Siepmann [17] the Lagrangians lj~).' j E Z,
N E N u { 00 }, satisfy the equalities

if A. E U, 1}, where we assume that (12) holds in the periodic case.
Algebraic bases of normed spaces with this property belong to the class of
extremal algebraic bases of a normed space X, thus allowing a stable
representation of the elements of X (see Reimer [7]). We extend this
concept of extremal bases to topological bases of normed spaces with
infinite dimension.

DEFINITION. Let (X, 11·11) be a normed space with infinite dimension,
(Xj)jE N be a topological basis of X and rPk : X -+ IR, S = 1:1= I ~jXj-+

rPk(s) = ~k' be the associated coefficient functionals, kEN. Further, let
Vk(X) c: X be defined by
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kE N. Then (Xj)jeN is called an extremal topological basis of X, ifOE Vk(X)
is a solution of every of the following problems of best approximation:

kEN.

Now, let X:= S;:: be provided with the sup-norm on IR, define
xj := (Lj''')je Nby (31) and assume for the rest of the paper that (3) is valid.
Since

IIL zk - U - sll ~ I(l'~k, .. - s)( -k - A)I = 1

= II/~k, .. 11 = IILzk-ull

holds for any SE VZk _ 1(S;::) and

II L Zk,.. -sll ~ IU:,'.. -s)(k-A)I = 1

= 11 / :,'.. 11 = II LZk,A.11

holds for any SE VZk(S;::), we recognize that (Lj''')jeN is an extremal
topological basis of S;:: .

Let the maps (/>00: S':: -+ 100 = {e E IR N: ebounded} and (/>N: S~ -+ IR N be
defined by

00
s= L ejL j,.. -+ (ej)jeN =: (/>OO(s),

j~1

N

s= L e)f... -+(el,oo·'~N)=:(/>N(s),
j~ 1

N EN. It is convenient to introduce the numbers

(33)

(34)

N EN u { 00 }, which are called conditions of the representations (33), (34),
respectively. Here 111'111 is the usual operator-norm, where the spaces 100 , IR N

are provided with the sup-norm, N EN. As a consequence of the fact that
(LP)je Nand {If.. : j = 1, 00" N} are extremal bases, we have

I~kl = lI~kLk,.. 11 ~ t~1 ~jLj, .. II, kE N,

and

k=l,oo.,N,

and hence
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N E N u {00 }. Moreover, if II ~ II ~ 1 we obtain the inequalities

II (cP
OO

) -l(011 = t~l ~jLj,,( II

=sUP{lj~1 ~jLj,,(X)I:XE~}

~ sup t~l ILj,,(x)1 ; XE ~}

= IIY:',(II

and

II(cPN)-I(~)11=ttl ~i~11

=SUP{lj~1 ~jl~(X)I:XE~}

~supt~lllf,(X)I:XE~}

=IIY~,,(II,

where Y':,,( (Y~,() denotes the cardinal (N-periodic) spline-interpolation
operator, ~hich maps any bounded (N-periodic) function f: ~ -+ ~ onto
the unique solution of CIP«(f(j-A))j"V S':,) (CIP«f(j-A))j"V S~)).

Thus we have

cond cP N
~ IIIY~)II, NENu{oo}.

Note that, due to Reimer [7J, the condition of an extremal basis of any
finite-dimensional normed space is bounded by its dimension. Since
Richards [11 J proved the relation

the bound given above is small, compared with the dimension of S~ in the
periodic case N EN, if N is chosen sufficiently high. For the calculation of
IIIY~,,( III, N EN u {oo}, and the asymptotic behaviour of IIIY':",( III, m -+ 00,

see Meinardus [2J, Meinardus and Merz [3J, Merz [4J, Richards
[11,12].

Finally let us remark that we conjecture that the sums of the squares of
the Lagrangians, involved in (33) and (34), are bounded by one, if (3) is
valid. This has been shown in the case of m = 3, A= 1 by Siepmann and
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Siindermann [18J and may be veryfied for m =2, ;. =!, using the same
method, and in the case of m = 1, ;. = 1 by direct calculation.
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